

2.4A/3.1A OUTPUT STEP-DOWN CONVERTER with DCP PROTOCOLS

1 Features

Synchronous step-down converter

- Built-in Power MOSFETs
- Wide Input Voltage Range, 8V to 32V
- Output Voltage Range, 5V
- Output Current, 2.4A/3.1A
- Output Current Limit Protection
- Conversion efficiency up to 92.4%
- Soft-Start
- Output Voltage Line Loss Compensation

Supports DCP(BC1.2, Apple, Samsung)

Multiple Safety Protections

- Input Over-Current Protection, Output Over-Current Protection, Input Over/Under Voltage Protection, Short Circuit Protection
- Over Temperature Protection
- Input Voltage Withstand up to 40V
- ➤ ESD 4KV

2 Application

- Car Charger
- Charge Adapter
- Intelligent Power Hub

3 Introduction

IP6536 is a synchronous step-down converter with built-in power MOSFETs. IP6536 supports DCP protocols (BC1.2, Apple and Samsung), providing total solution to car charger, charge adapter and intelligent power hub applications.

IP6536 exhibits CV/CC characteristics. The output in CV mode when the load current lower than current limit, otherwise in CC mode, in which the output voltage decreases as the load current increases.

IP6536 supports output voltage compensation due to the line loss. The output voltage increases as the load current increases.

IP6536 incorporates soft-start function to prevent the inrush current during start-up.

IP6536 incorporates multiple safety protections, such as input OV/UV, output OV/UV/OC and SC protection.

The package of IP6536 is ESOP8.

4. IP6536 Series Product Introduction

IC	REMARKS
IP6536	OCP is 2.4A; Dual DCP output
IP6536_2A4	OCP is 2.4A; Single DCP output
IP6536_3A1	OCP is 3.1A; Single DCP output

NOTES:

The default function of PIN2 is LED, and the EN function needs to be customized.

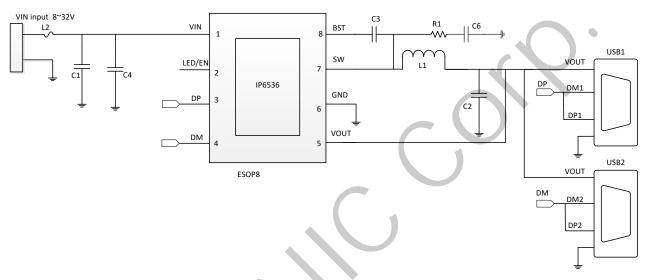


Fig. 1 IP6536 Simplified Schematic

5 PIN Definition

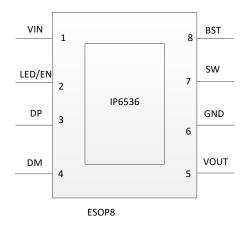


Fig. 2 IP6536 PIN Configuration

NO.	Name	Description
1	VIN	Input voltage node
2	LED/EN	LED function or EN function pin
3	DP	Connect to USB DP data line
4	DM	Connect to USB DM data line
5	VOUT	Output voltage feedback node
6	GND	Power ground
7	SW	Switching node of the DC-DC converter
8	BST	Bootstrap capacitor node
9(EPAD)	PGND	Power and thermal ground

6 Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Input voltage range	V _{IN}	-0.3 ~ 40	V
SW voltage range	V _{LX}	-0.3 ~ VIN+0.3	V
DM/DP voltage range	V _{DM/DP}	-0.3 ~ 6	V
VOUT voltage range	V _{vout}	-0.3~8	V
Junction Temp range	T _J	-40 ~ 150	$^{\circ}$
Storage Temp range	Tstg	-60 ~ 150	$^{\circ}$
Thermal resistance (junction to ambient)	θ_{JA}	40	°C/W
ESD (HBM)	ESD	4	KV

^{*} Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Unless otherwise specified, all voltages are referenced to VSS pin.

7 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input voltage	V _{IN}	8	12/24	32	V

8 Electrical Charateristics

TA=25°C, L=33uH, C_{OUT}=220uF E-cap(About 60mΩ ESR), VIN=12V, VOUT=5V, otherwise specified

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input System						
Input voltage	V _{IN}		8	12	32	V
Input under	.,			8.1		V
voltage threshold	V _{IN-UV}	hysteresis		0.3		V
Input over	.,			32		V
voltage threshold	V _{IN-OV}	hysteresis		0.2		V
Input quiescent current	IQ	VIN=12V, VOUT=5V@0A		5		mA
Converter Systen	n		1			•
High side MOSFET on resistance	R _{DS(ON)}	. ()		100		mΩ
Low side MOSFET on resistance	R _{DS(ON)}			80		mΩ
Switching frequency	F _{SW}			150		KHz
Output System						
Output voltage	V _{OUT}		4.75	5	5.25	V
Output voltage ripple	ΔV_{OUT}	VIN=12V, VOUT=5V@3A		150		mV
Soft-start time	T _{SS}	VIN=12V, VOUT=5V		1		ms
Line loss compensation	V _{COMP}	VIN=12V, VOUT=5V, IOUT=3A		120		mV
Current limit in CC mode	I _{OUT}	VIN=12V, VOUT=5V		3.1		Α
Output hiccup restart voltage	V _{OUT}	When output enters CC mode, output hiccup restart voltage		3.7		V
Thermal shutdown Temp.	T _{OTP}			150		$^{\circ}$
Thermal shutdown Temp. hysteresis	ΔT_{OTP}			40		$^{\circ}\!$

9 Detailed Description

Synchronous Step-Down Converter

The IP6536 is a synchronous step-down converter with built-in power MOSFETs. .IP6536 supports wide input voltage range (8-32V) and 5V output at 3.1A Max. load current. The switching frequency is 150KHz. The conversion efficiency is up to 92.4% at VIN=12V, VOUT=5V@2.4A.

The efficiency under different input voltage and load current is shown in Fig. 3. Fig. 4 shows the output voltage characteristics under different load current.

Fig. 3 IP6536 Conversion Efficiency

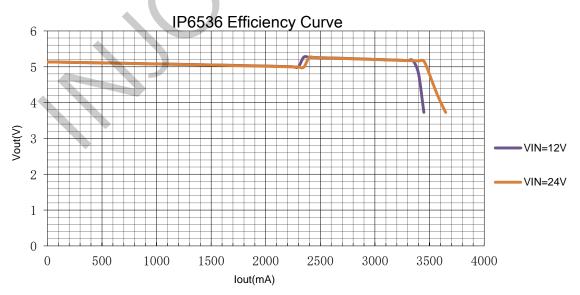


Fig.4 IP6536 Output Voltage Characteristics

Output Voltage Line Loss Compensation

IP6536 supports output line loss compensation. The output voltage with 3A load is higher 120mV than the voltage without load.

CC/CV Characteristics

IP6536 exhibits CV/CC characteristics. The output in CV mode when the load current lower than current limit, otherwise in CC mode, in which the output voltage decreases as the load current increases.

Protections

IP6536 monitors voltage on VIN. If the voltage is lower than 8.1V, IP6536 enters standby mode, and shuts down the converter. If the voltage is higher than 32V, IP6536 detects over voltage, and then shuts down the converter. When VIN decreases 0.2V lower than the over voltage threshold, IP6536 resumes the output voltage.

IP6536 also monitors voltage on VOUT. If the voltage is lower than 3.7V, IP6536 detects output under voltage, and then shuts down the converter. During output under voltage protection, IP6536 enters hiccup mode, and restarts the converter every 2 seconds.

IP6536 incorporates short circuit protection. After 8ms from start-up, if VOUT is lower than 3.7V, IP6536 detects output short circuit, then shutting down the converter, and enters hiccup mode. IP6536 restarts the converter every 2 seconds.

IP6536 detects over temperature when the chip temperature is higher than 150° C. IP6536 shuts down the converter and restarts the every 2 seconds. When the chip temperature decreases below 110° C, IP6536 returns to normal state.

Charge Protocols

IP6536 supports DCP (BC1.2, Apple, Samsung).

10 Typical Application

Fig.5 shows the typical application schematic.

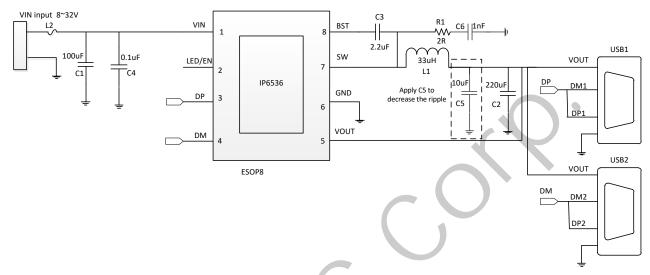


Fig. 5 IP6536 Application Schematic

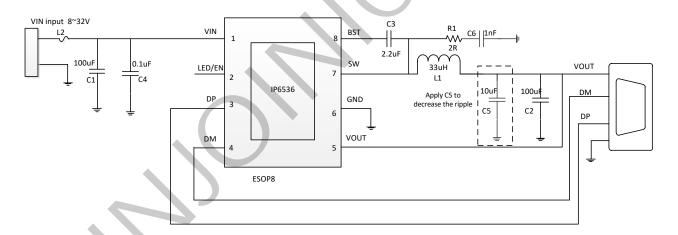


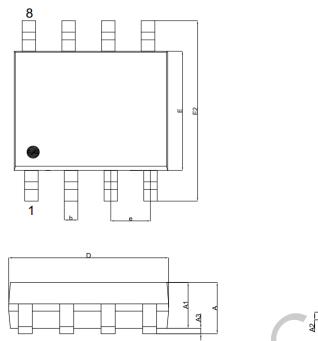
Fig. 6 IP6536_2A4 and IP6536_3A1 Application Schematic

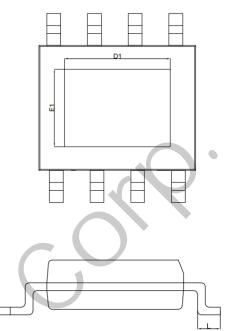
NOTES:

- 1. EPAD of IP6536 must have good contact with PCB board ground.
- 2. C1 and C4 must be connected to PIN 1;
- 3. C5 must be connected to PIN 5;
- 4. R1 and C6 should be placed close to the PIN7 of IP6536, the loop composed of SW(PIN7), R1, C6 and PGND should be minimized on the PCB board;

11 BOM

NO.	Device	Spec.	Unit	Counts	Designator	备注
1	IC	IP6536	PCS	1	U1	
2	electrolytic capacitor	100uF/35v	PCS	1	C1	Withstand voltage higher than 35V
3	electrolytic capacitor	100uF/16v	PCS	1	C2	Withstand voltage higher than 16V To decrease ripple, C2 is 220uF
4	SMT capacitor	0603 2.2uF 10%	PCS	1	C3	Withstand voltage higher than 10V
5	SMT capacitor	0603 0.1uF 10%	PCS	1	C4	Withstand voltage higher than 35V
6	Inductor	33uH+/-20%, current 4.5A DCR<12mohm	PCS	1	11	
7	SMT resistor	0603 2R 5%	PCS	1	R1	
8	SMT capacitor	0603 10uF 10%	PCS	1	C5	Withstand voltage higher than 16V To decrease the ripple, apply C5, otherwise C5 NC.
9	SMT capacitor	0603 1nF 10%	PCS	1	C6	Withstand voltage higher than 35V
10	FUSE	L2	PCS	1	L2	Current 3A




12 IP Series Product Selection Table

Outpu		Dual					Pro	tocols	5				Packa	ge
IC Part Current	Ports	DCP	QC2.0	QC3.0	FCP	SCP	AFC	MTK PE	SFCP	PD2.0	PD3.0 (PPS)	Pkg	P2P	
IP6523S_N	3.4A	-	√	-	-	-	_	_	-	_	-	_	ESOP8	NId2NId
IP6536	2.4A	√	√	-	-	-	_	-	_	_	-	_	ESOP8	2PIN
IP6525T	18W	-	√	1	1	√	_	√	_	_	-	-	ESOP8	PIN:
IP6525S	18W	-	√	4	4	√	√	4	√	√	_	-	ESOP8	PIN2PIN
IP6510	18W	-	√	1	1	√	-	4	-		1	-	ESOP8	P
IP6520	18W	-	√	1	1	√	√	1	√	-	1	_	ESOP8	PIN2PIN
IP6520_PPS	18W	_	√	1	1	√	√	4	4	1-	1	√	ESOP8	Z
IP6537_C	18W	_	√	1	4	1	~	1	1	4	1	√	QFN24	PIN2PIN
IP6537_C_30W20V	30W	-	√	1	1	Ą	√	14	√	√	1	√	QFN24	2PIN
IP6515	4.8A	√	√	-	-	-		_	-	_	-	-	QFN32	
IP6538_CC	27W	√	7	1	>	7	_	√	✓	_	√	√	QFN32	Р
IP6538_AC	27W	√	>	1	1	7	√	√	✓	_	√	√	QFN32	PIN2PIN
IP6538_AA	24W	√	7	1	1	√	1	√	√	_	-	-	QFN32	2
IP6527S_A	24W		7	1	√	7	4	√	√	-	-	-	QFN32	Р
IP6527S_C	27W		7	√	√	7	_	√	√	_	√	√	QFN32	PIN2PIN
IP6527S_C_18WPD	18W		√	√	√	√	_	4	√	_	√	4	QFN32	2
IP6566_CC	20W	→	√	4	4	√	_	1	_	√	4	√	QFN28	P
IP6566_AC	20W	√	√	4	4	√	√	1	_	√	4	√	QFN28	PIN2PIN
IP6566_AA	18W	√	√	1	1	1	√	4	_	√	_	_	QFN28	2

13 Package

	POD ESOP8L							
		Size unit: mm						
	Symbol	Minimum	Normal	Maximum				
Total Thickness	А	1.30	ı	1.69				
Molding Thickness	A1	1.30	ı	1.60				
LF Thickness	A2	0.203	ı	0.233				
Stand Off	А3	0.00	-	0.09				
2 1 5	D	4.80	1	5.00				
Body Size	Е	3.80	-	4.00				
	E2	5.80	1	6.20				
Evenerad Rad Siza	D1	-	3.302	-				
Exposed Pad Size	E1	-	2.413	-				
Lead Width	b	0.356	-	0.456				
Lead Length	L	0.40	-	0.80				
Lead Pitch	е	1.27 BSC						

IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.