

IP6525S

22.5W OUTPUT STEP-DOWN CONVERTER with FAST CHARGE

PROTOCOLS (DCP/QC2.0/QC3.0/FCP/AFC/SFCP/MTK/SCP/VOOC)

1 Features

- Synchronous step-down converter
 - Built-in Power MOSFETs
 - Input Voltage Range, 5.2V to 32V
 - Output voltage range: 3V~12V, adjustable according to the fast charge protocol
 - QC output power: 18W max. (5V@3.4A, 9V@2A, 12V@1.5A)
 - SCP Maximum Output Power: 22.5W Maximum
 - > Output Current Limit Protection
 - VIN=24V,VOUT=5V/3A,Conversion efficiency up to 94.2%
 - Soft-Start
 - Output voltage line compensate: 50mV/A
- Fast Charge Protocols
 - Supports DCP (BC1.2 and Apple)
 - Supports QC3.0 and QC2.0
 - > Supports Huawei Fast charge: FCP and SCP
 - Supports Samsung Fast Charge Protocol AFC(MAX 12V)
 - Support MTK PE+2.0 and PE+ 1.1
 - Support SFCP
 - Support OPPO fast charge: VOOC
- Multiple Safety Protections
 - Input Over-Current Protection, Output Over-Current Protection ,Input Over/Under Voltage Protection, Short Circuit Protection
 - Over Temperature Protection
 - DP/DM Over Voltage Protection
 - ESD 4KV, Input Voltage Withstand up to 40V

2 Application

- Car Charger
- Fast Charge Adapter
- Intelligent Power Hub

3 Introduction

IP6525S is a synchronized switch buck regulator and support multiple fast charge output standards, providing solutions for car charger, fast charge adaptor and smart power strip.

IP6525S has built-in power MOSFET, input voltage range is 5.2V to 32V, output voltage ranges from 3V to 12V, and output voltage range with 22.5W max. output power; support voltage and current auto adjust according to the fast charge standard. Typical output voltage and current including: 5V@3A, 9V@2A, 12V@1.5A.

IP6525S has the function of automatic adjustment of overcurrent point. When SCP low voltage fast charging protocol handshake is successful, Supports 5V@4.5A, 4.5V@5A.

IP6525S supports output line compensation, when output current increases, the output voltage will increase accordingly that makes up the resistive voltage drop introduced by connection, wire, and PCB traces.

IP6525SS incorporates soft-start function to prevent the inrush current during start-up.

IP6525S supports multiple fast charge protocols. The protocol is identified by the signal on DP/DM, and IP6525S adjusts output voltage according to the corresponding protocols. IP6525S supports DCP (BC1.2 and Apple), Qualcomm Quick Charge QC2.0 and QC3.0, Huawei FCP ,Samsung AFC(MAX 12V), SFCP, MTK PE+2.0 and PE+ 1.1 and OPPO fast charge: VOOC

IP6525S support multi-protection on input overvoltage and under voltage, output overcurrent, overvoltage, under voltage and short circuit.

The package of IP6525S is ESOP8.

4 IP6525S Series Product Introduction

IP6525S	USBA	QC ⁽¹⁾	5V/3A	9V/2A	12V/1.5A	HLED function: If this function is not
IP6525S_EN	USBA	QC ⁽¹⁾	5V/3A	9V/2A	12V/1.5A	EN function: If this function is not required, This PIN floats.
IP6525S_PS	USBA	QC ⁽¹⁾	5V/3A	9V/2A	12V/1.5A	PS function: If this function is not required, This PIN is grounded.

Notes:

- QC represents the output power of high voltage fast charge.
- IP6525S supports SCP low voltage fast charging protocol, supports 5V@4.5A, 4.5V@5A.
- QC fast charge output of IP6525S supports CV/CP/CC loop.

Fig. 1 Simplified Application Schematic

5 PIN Definition

IP6525S

Fig. 2 IP6525S PIN Configuration

NO.	Name	Description
1	GND	Power ground
2	SW	Switching node of the DC-DC converter
3	BST	Bootstrap capacitor node
Λ		Fast charge LED indication/ power control function/chip
4	nled/P3/EN	enable(EN function needs to be customed)
5	DM	USB DM terminal for fast charge protocol
6	DP	USB DP terminal for fast charge protocol
7	VIN	Input voltage node
8	VOUT	Output voltage feedback node
9(EPAD)	GND	Power and thermal ground

6 Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Input voltage range	V _{IN}	-0.3 ~ 40	V
SW voltage range	V _{SW}	-0.3 ~ 40	V
DM/DP voltage range	V _{DM/DP}	-0.3 ~ 6	V
VOUT voltage range	V _{VSP/VSN}	-0.3 ~ 20	V
Junction Temp range	TJ	-40 ~ 150	°C
Storage Temp range	Tstg	-60 ~ 150	°C
Thermal resistance (junction to ambient)	θ_{JA}	40	°C/W
ESD (HBM)	ESD	4	KV

* Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability.

7 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input voltage	V _{IN}	5.2	12/24	32	V

*Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions

8 Electrical Charateristics

TA=25°C, L=22uH, C_{OUT}=100uF E-cap(About 40mΩ ESR), VIN=12V, VOUT=5V, otherwise specified

Parameters	Symbol	Test Condition	Min.	Тур.	Max	Unit
Input system						
Input voltage	V _{IN}		5.2	12	32	V
		Rising voltage		5.2		V
input under voltage	V _{IN-UV}	Falling voltage		5.0		V
		Rising voltage		32.6		V
input over voltage	V _{IN-OV}	Falling voltage		32.1		V
Input quiescent current	Ι _Q	VIN=12V, VOUT=5V/0A		3		mA
Power system						
High-side MOS Ron resistance	R _{DS(ON)}			30		mΩ
Low-side MOS Ron resistance	R _{DS(ON)}			20		mΩ
Switching frequency	Fs			100		KHz
Output system						
Output voltage	V _{OUT}		3	5	12	V
		VIN=12V, VOUT=5V/3A COUT: 220uF+22uF		85		mV
Output voltage ripple	ΔV _{OUT}	VIN=12V, VOUT=9V/3A COUT: 220uF+22uF		70		mV
		VIN=24V, VOUT=12V/2.25A COUT: 220uF+22uF		90		mV
Soft start time	T _{ss}	VIN=12V, VOUT=5V		4		ms
Output line compensate voltage	V _{COMP}	VIN=12V, VOUT=5V, IOUT=3A		150		mV
		VIN=12V, VOUT<=4V		3.4		А
Single port max output current		VIN=12V, 4V <vout<=5v< td=""><td></td><td>3.4</td><td></td><td>А</td></vout<=5v<>		3.4		А
in CC mode	IOUT	VIN=12V, 7V <vout<=9v< td=""><td></td><td>2</td><td></td><td>А</td></vout<=9v<>		2		А
		VIN=24V, 9V <vout<=12v< td=""><td></td><td>1.5</td><td></td><td>А</td></vout<=12v<>		1.5		А
Output hiccup restart voltage	V _{OUT}	Hiccup restart voltage when output enter CC mode (VOUT preset voltage >= 5V)		4.1		v

		Hiccup restart voltage when output enter CC mode (VOUT preset voltage < 5V)	 3	 v
Output hiccup restart time	T _{HIC}	VIN=12V, VOUT=5V	 2	 S
DPDM over voltage protection voltage	V _{ovp_dpd} m	VIN=12V, VOUT=5V	 4.5	 v
Thermal shutdown temperature	T _{OTP}	Rising temperature	 150	 °C
Thermal shutdown temperature hysteresis	ΔT_{OTP}		 40	 °C

9 Function Description

9.1 IP6525S Internal block diagram

9.2 Synchronized switch buck regulator

IP6525S integrate a Synchronous-Rectified Buck Converter, input voltage range is $5.2V \sim 12V$, output voltage range is $3V \sim 20V$, Typical output portfolio is 5V@3.4A, 9V@2A and 12V@1.5A.

IP6525S integrate power switch MOSFET with 100kHz working frequency. The conversion efficiency is up to 94.2% at VIN=24V, VOUT=5V@3A. The efficiency under different input voltage and load current is shown in Fig. 4. Fig. 5 show the output voltage characteristics under different load current.

IP6525S auto adjust output voltage and current according to the fast charge requirement.

Fig. 4 IP6525S Conversion Efficiency

Fig.5 IP6525S Vout-lout curve when VIN=24V

9.3 Output Voltage Line Loss Compensation

IP6525S supports output line loss compensation. The output voltage increases at 100mV/1A rate.

9.4 PIN4 Function

PIN-4(HLED/PS/EN) can be alternatively used as fast charge indication, Control power function , external chip enable function.

PIN-4 is used as fast charge indication. Indication led can be direct connected to this PIN. LED turns on when the fast charge protocol request voltage level higher than 5V.

When used as a power control function, two IP6525S_PS can be used to the scheme of realizing input power sharing dual A-Port output; It can also form an AC two-port output scheme with IP6537.

When used as a power control function, pulling down PIN-4 will shut down DC-DC converter. PIN-4 cannot be connected to VIN, or else PIN-4 will be damaged by high voltage.

9.5 CC/CV Characteristics

IP6525S output has CV/CP/CC mode: when the output current is lower than preset value, the output is in CV mode with constant voltage; when the output current is higher than preset value, the output is in CP mode with decreasing output voltage. as the load increases, the output voltage decreases; when the voltage drops to 6.5V, CC mode is entered, The load continues to increase and the output voltage rapidly decreases until the output voltage undervoltage protection is triggered.

9.6 Protections

IP6525S monitors voltage on VIN. If the voltage is lower than 5.0V, IP6525S enters standby mode, and shuts down the converter. If the voltage is higher than 32.6V, IP6525S detects over voltage, and then shuts down the converter. when VIN decrease under 32.1V, IP6525S determines the input voltage recovers and opens the output.

IP6525S support output under voltage protection: when VOUT voltage is lower or equals 5V, if the VOUT voltage is lower than 4.1V, IP6525S determines the output is under voltage and will shut down the output and hiccup restart after 2sec.

IP6525S support short circuit protect, 8ms after the circuit is started, if VOUT voltage is under 4.1V, IP6525S determines the output is short circuit and will shut down the output and hiccup restart after 2sec.

IP6525S support DP/DM over voltage protection, when the DP/DM voltage is higher than 4.5V, IP6525S determines the signals are over voltage and will shut down the output and hiccup restart after 2sec.

IP6525S support over temperature protection: when the temperature detected is higher than 150° C, the output will be shut down. When the temperature decreases below 110° C, IP6525S determines the temperature has recovered and will restart the output.

9.7 Fast Charge Protocols

IP6525S supports multiple fast charge protocols:

- > DCP (BC1.2 and Apple)
- > Qualcomm quick charge QC2.0 and QC3.0
- ➢ Huawei FCP and SCP
- Samsung AFC(MAX 12V)
- Support MTK PE+1.1 and MTK PE+2.0
- Support SFCP
- Support OPPO fast charge : VOOC

Note:

- 1. IP6525S/IP6525S_EN/IP6525S_PS does not support VOOC protocol;
- 2. The customer can apply for the customized device that supports the VOOC protocol after obtaining the VOOC authorization;

10 Typical Application

IP6525S car charging solution only needs MOSFET, inductor, capacitor and resistor.

Fig. 6 IP6525S Application Schematic

Notes:

- 1. IP6525S EPAD must have a good contact with PCB GND;
- 2. PIN4 should not be connected anywhere if the HLED indicator light is not needed;
- 3. C1 and C2 should be placed close to the PIN7 of IP6525S;
- 4. C5 should be placed close to the PIN8 of IP6525S;
- 5. R1 and C6 should be placed close to the PIN2 of IP6525S, the loop composed of SW(PIN2), R1, C6 and GND should be minimized on the PCB board;

11 BOM

NO.	Device	Spec.	Unit	Counts	Designator	备注
1	IC	IP6525S	PCS	1	U1	
2	electrolytic capacitor	100uF/35V	PCS	1	C1	Rated voltage>35V.
3	electrolytic capacitor	100uF/25V	PCS	1	C4	Rated voltage>25V
4	TC-220M-4.5 A-CS137125	22uH+/-20%,Nominal current 4.5A DCR<12mohm	PCS	1	L1	3L Electronic
5	ceramic capacitor	0603 2.2uF 10%	PCS	1	C3	Rated voltage>16V
6	ceramic capacitor	0603 100nF 10%	PCS	1	C2	Rated voltage>35V. Close to IC PIN.
7	ceramic capacitor	0603 100nF 10%	PCS	1	C5	Rated voltage>16V
8	resistor	0603 2ohm 5%	PCS	1	R1	
9	ceramic capacitor	0603 1nF 10%	PCS	1	C6	
10	LED	0603	PCS	1	D1	
11	fuse	F1	PCS	1	F1	Nominal current>4A

Recommended inductor: TC-220M-4.5A-CS137125

3L product No.	Inductance (uH)	Tolerance	DC Resistance rance (mΩ)		DC Resistance (mΩ) DC Amp.		Heat Rating Current DC Amp.	Saturation Current DC Amps.	Measuring Condition
			Тур.	Max.	ldc(A)Max	Isat(A)Max			
TC-220M-4.5A- CS137125	22.0	±20%	12	14	4.5	8			

12 IP series IC Products List

	Dual	Protocols									Packa	age		
IC Part	Current	Ports	DCP	QC2.0	QC3.0	FCP	SCP	AFC	MTK PE	SFCP	PD2.0	PD3.0 (PPS)	Pkg	P2P
IP6523S_N	3.4A	-	~	-	-	_	_	_	_	_	_	I	ESOP8	PIN2
IP6536	2.4A	~	~	-	-	_	_	_	_	_	_	Ι	ESOP8	PIN
IP6525T	18W	-	~	~	~	~	-	~	-	-	-	-	ESOP8	PIN
IP6525S	18W	-	~	~	~	~	~	~	~	~	-	-	ESOP8	2PIN
IP6510	18W	-	~	~	~	~	-	~	-	-	~	-	ESOP8	P
IP6520	18W	-	~	~	~	~	~	~	~	-	~	-	ESOP8	IN2PI
IP6520_PPS	18W	-	~	\checkmark	~	~	~	~	~	-	~	\checkmark	ESOP8	Z
IP6537_C	18W	-	~	\checkmark	~	~	~	~	~	~	~	\checkmark	QFN24	PIN
IP6537_C_30W20V	30W	-	~	~	~	~	~	~	~	~	~	\checkmark	QFN24	2PIN
IP6515	4.8A	~	~	-	-	_	-	-	_	-	-	-	QFN32	
IP6538_CC	27W	~	~	\checkmark	\checkmark	~	-	~	~	-	~	\checkmark	QFN32	P
IP6538_AC	27W	~	~	\checkmark	~	~	~	~	~	-	~	\checkmark	QFN32	IN2PI
IP6538_AA	24W	~	~	~	~	~	~	~	~	-	-	_	QFN32	Z
IP6527S_A	24W	-	~	~	~	~	~	~	~	-	-	_	QFN32	P
IP6527S_C	27W	-	~	~	~	~	-	~	~	-	~	\checkmark	QFN32	IN2PI
IP6527S_C_18WPD	18W	-	~	~	~	~	-	~	~	-	~	\checkmark	QFN32	Z

13 Package

SVMBOL		MILLIMETER			
STWIDUL	MIN	NOM	MAX		
А			1.65		
A1	0.05		0.15		
A2	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
b	0.39		0.47		
b1	0.38	0.41	0.44		
С	0.20		0.24		
c1	0.19	0.20	0.21		
D	4.80	4.90	5.00		
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е		1.27BSC			
h	0.25		0.50		
L	0.50	0.60	0.80		
L1	1.05REF				
θ	0		8°		
D1		3.10REF			
E2		2.21REF			
			•		

IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.